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This paper aims at providing melhods of checking whether the surface elastic term K3 exists
or not, by studying the physical effects caused by K3 on weak anchoring planar NLC cells.
We adopt the effective expression of K3 for an ideal surface according to Pergamenshchik
and Zumer, and obtain the following results. (1) k=Kj; /K“ can be determined by two
threshold fields if both the Fréedericksz transitions at the threshold point are of second
order. One threshold field corresponds to application of the external magnetic field
perpendicular to the substrates; the other corresponds to the field parallel to the substrates.
(2) The existence of the K;; term may change the property of the Fréedericksz transition, i.e.
from first order to second order, or vice versa. (3) The various curves of relative optical
retardation versus reduced magnetic field & for different k intersect at one point, and the
slopes at the common point are sensitive to k. These results assist in the design of
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Physical effects of the surface elastic term K;3 on weak

experiments to check the existence of Kjs.

1. Introducion
According to Frank [1], the free energy density of a
nematic liquid crystal caused by deformation of the
director n can be expressed as

1 1 1
Jr= §K11(V~n)2+ EKzz(n'VX ﬂ)2+ EKss(n xV X“)2~

However, Nehring and Saupe [2] pointed out that there
should be an additional two terms up to the order of
(6n)* in fi. These are

1
Ja= 3 (K22 + K24)V-[(n-V)n—n(V-n)] (1)
f13 =K13V'(HV'H). (2)
The total free energy density fy becomes
Ja=fr+fou+fi3. (3)

The contributions of the terms f5, and fi3 to total free
energy can eventually be written as surface energy; they
are termed surface elastic energy.

In recent years there has been controversy over the
existence of these two terms [3-12]. Many authors
regard that they do not exist, because of the restrictions
of elastic theory. However, Pergamenschik believes that

*Author for correspondence;
e-mail: ronghua_guan@sohu.com

they do exist and regards this as one of the central
problem of the physics of liquid crystals [13]. Whether
these two terms exist or not should ultimately be
examined experimentally. Recently, Stallinga et al. [14]
have studied the effects of the K;3 term on the
electrically controlled birefringence (ECB) cell, but
the conclusion is not satisfactory because of experi-
mental inaccuracy. We believe this is because the
considered effects are insensitive to the K3 term; some
new physical effects, sensitive to the Kj3 term, must
therefore be sought.

In this paper we seek new physical effects, sensitively
dependent on K3, by means of analytical methods and
numerical calculation. In §2 we determine the Gibbs
energy from which the differential equation and the
boundary condition satisfying director n are obtained.
It should be emphasized that the interfaces should be
considered as ideal, according to the continuum theory.
Pergamanshchik and Zumer [15] pointed out that both
the density and scalar order parameter vary near the
real surface layer. But this can eventually be changed
into an ideal surface (the ideal surface refers to the
density, and order parameters are uniform and equal to
zero abruptly at the interface). The K3 term may be
modified to an effective term K;, which is called
effective elastic constant. In §3 the threshold field of an
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LC cell under an external magnetic field will be
considered; two cases are examined and calculated.
One is splay transition (the external field perpendicular
to the substrates), the other is twist transition (the
external field parallel to the substrates). We obtain the
formula k= (Kj;/Ki) which can be used to judge
whether the K3 term exists or not. In §4, we discuss the
first order Fréedericksz transition, probably caused by
the existence of the K;; term. Another method for
testing the Kj3 term is also given. In §5, the relation
between the relative optical retardation and K3 is
considered, which can also be used to test for Kj3.

2. The Gibbs free energy: equations and boundary

condition

In a weak anchoring NLC cell, two substrates lie in
the z=0 and z=/ planes, with the x axis in the lower
substrate plane. Assuming the two substrates are
identical, the easy direction e in both substrates is the
same and along the x axis. One external magnetic field
H is applied to the LC medium. Two cases may be
considered. In the first, H lies along the z axis and the
director n of the LC deflects from the x axis in the xz
plane. Denoting the deflection angle by 6, the director n
can be expressed as n=(cos 0, 0, sinf). In the second
case, H lies along the y axis and the director deflects
from the x axis in the xy plane. Denoting the deflection
angle by ¢, the director n can be expressed as n=(cos ¢,
sing, 0). Figures1 and 2, respectively, illustrate the
geometries of the two models.

Before writing out the Gibbs free energy, two points
must be explained. One is the surface anchoring energy,
the other is the elastic free energy. Rapini and Papoular
have proposed a simple phenomenological expression
for the anchoring energy per unit area [16]

1
gs(o) = EA“ sin® o (4)

12 F = |

0 X 0 i

Figurel. The mode of a planar alignment liquid crystal cell
when applying an external magnetic field H along the z
axis. The director n of the LC deflects from the x axis in
the xz plane.

8]
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Figure2. The mode of a planar alignment liquid crystal cell
when applying an external magnetic field H along the y
axis. The director n of the LC deflects from the x axis in
the xy plane.

where « is the angle between the easy direction e and
the director n of the NLC at the nematic—wall interface,
and A, is called the anchoring strength. This is the so-
called RP formula. The RP formula describes many
effects successfully in the presence of a surface.
However, some results calculated from the RP formula
do not agree well with experimental observations [17].
Many authors have introduced a new form of
anchoring energy to replace the RP formula. If the
lower order modification only is included, the new form
can be expressed as [18, 19]

gs(o0)= %A“ sin” (14 sin® ) (5)

where ( is a modification constant. Formula (5) is a
modification of (4) and has been accepted by most
authors [14]. When the director distribution in a LC is
calculated through continuum theory, the interfaces are
assumed to be ideal. Hence formula (5) should be
regarded as the effective surface density of anchoring
energy.

On the other hand, if we adopt the ideal interface,
constants Kj3 and K54 in equations(1)—(3) should be
replaced by the effective elastic constants Kj; and K3,
in terms of Pergamanshchik’s theory [15].

For the first case of an external magnetic field H
along the z axis, the elastic free energy is

Ga= de dv

! 1 1,0\ [do)?
:S{Jo dzl(2K1100820+ §K33 sin 0> <dz) (6)
do

Z

+ K5 cos 0 sin 0
0 d

— K} cos Oy sin O %

where S is the area of the substrate, and 0, and 0; are
the values of 0 at z=0 and z=/, respectively. The total
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free energy of the system can be written as

(! 1 1 . do\? 1 .
G=S{J0 dz{(EKncoszb‘-i— §K33 sin’ 6) <E> —Ezal—lzsmz(i

0
—Kj; cos O sin 903—’ + Kj; cos 0; sin 6,?
z]o z

W)

!

1 1
+540 sin® 0o (14 sin” ) + 540 sin” 0; (1+( sin® 9,)}.

Applying the calculus of variations, equation (7) yields

2

(KH cos? 0+ K3 sin® 0) % + sin 0 cos 0(Kz33 —Kn)? + 1, H? sin 0 cos =0 (8)

with the boundary condition
[(K11 +Ki3) cos? Og + (K33 — Ki3) sin’ 60] 6

N ©)

1 do
= Ay sin 0y cos 0 (1+2¢ sin® ) — 5 Ky sin 20y 550
0

where =4/

dZ|Z:0, which should be a function of 6.
This boundary condition is also given in [14] and meets
the requirement of [13].

For the second case of an external magnetic field H
along the y axis, the total free energy of the system can

be written as

N D 2 A .
G— s{ L dz {2 K <£> — 51 H’sin’ (p:|
(10)

+ %A,,, sin® gy (1 + sin” pg) + %A(ﬁ sin? ¢, (14 sin’ (/J,)}
where ¢y and ¢, are the values of ¢ at z=0 and z=/,
respectively.

Applying the calculus of variations, equation (10)
yields
2

d .
Kzzd—;20+xaH2sm(pcos¢=0 (11)
with the boundary condition
d . .
Kzzd—f = A, sin gy cos gy (1+2Csin* gy).  (12)
z=0

Comparing equations(7)—(9) with equations (10)—(12)
we see that all equations in the second case of H along
the y axis can be obtained by letting K;;=K33= K>,
K{;=0, and by transforming 0 to ¢, 4y to A, in
corresponding equations in the first case of H along the
Z axis.

3. The fundamental equations, threshold field and the
value of &

We first discuss the solutions of equation (8) with the
boundary condition (9). Clearly there exist two trivial
solutions: (i) 0=0, the uniform solution, the corre-
sponding LC state is called the uniform state; (i) 6=
n/2, the saturated solution, the corresponding LC state
is called the saturated state. In addition, there is a

non-trivial solution satisfying df/dz #0, the correspond-
ing LC state is called the disturbed state. From
equation (8) we know that the disturbed state satisfies

d . .
5 [(K1 cos? 0+ K3 sin® 0) 0" + y,H? sin’ 0]=0. (13)
Assuming the director distribution is symmetric to the
middle layer of the cell (z=1/2), when z=1/2, 6=0,, and

% Z:%=0. From equation (13) we obtain

(K1 cos® 0+ K sin’ 0) 0° =y, H? (sin2 0,y — sin’ 0)
that is,

, 1
do 1 )7 sin? 0, — sin’ 0 2< 1)

(L Vg M I mSO (ero<2) (14
dz (Kll < 147y sin® 0 2 (14)

where

K33 — Ky
y=—-—

X (15)

Integrating equation (14) results in

D Nee (o 1eysinio )
2\ Ky 9, \sin” 0y, — sin” 0
In order to express the boundary condition of the
disturbed solution definitely and make numerical
calculation in the next sections, we make a variable
transformation as follows. Letting
.2 )
.2 sin” 0 sin” Oy
u=sin" Oy, v=——, o= 17
" sin® 0, 0 sin® 0, (a7

and introducing the reduced field

SRS o

then equation (16) can be expressed as

1 . i
Eh:J L (H/”V)Zdv (19)
2 v 2[v(1—v)]? I —uy

Equation (19) is an integral equation in u and vy, and is
transformed from the differential equation (14).

Now we also re-express the boundary condition with
u and vy. From equation (14) we obtain

1
. (u—uvy \?
0, ==h 20
0 (1+yuvo> (20)
and
di%flfl u—uvy \? 1 ou 1+yu vy
do, 21 ! L+yuvg ) [u(14yuve) 60y (1—vo)(1+yuvy) 300 '(21)

0uld0y and dvy/d0y can be obtained from equations (19)
and (17), respectively. Letting
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1 \ i

I =J L <1+/”V> dv (22)
w 2[p(1—y) \ 1 —uy
1 >

12=J ! 1 <1+WV> vdy (23)
w 2[p(1—v)2 \ 1 —uv

_ ! 1 1 +yuy %. 1 )
13_qu2[ (1—v)J? (1—MV) (1+V”V)(1—“V)d 24)

the boundary condition (9) can be expressed as

s k vo(l—uv)[ 1 1-0 YU
! I+k 14yuvy [1=vy Q 1 +yuvy

1
1 1+yuv vo(l—uvy) ]2
=o(l1+2
#(1+2Cuv) 1+k14yuvy {(1 —o)(1+yuvy)
where
1
_ vo(1—wo) (1 —uwp)|?
0=+ (19| PO (o)
- K33 — K1 —2K7;
P A i
K1+ K}
11 13 (27)
Ky Avl
Ky’ 2Ky
The derivation of the above equations is given in
Appendix 1.
From equations (19) and (22) we know
T
Eh_ll' (28)
Defining the reduced free energy
G
= 2
8=3K,S (29)

then the reduced free energies for the uniform state,
saturated state and disturbed state are, respectively,

gu=0 (30)
g5=—<gh)2+oc(l+é) (31)

g9=u{112—21112—2k|:%m:|211 -‘rO(V()(l +Cuv0)}. (32)

Equations (22)—(32) are the basic equations in this
paper, and are suitable for the first case of H along the
z axis. For the second case of H along the y axis, we let
K1 =K33=K>5>, K{;=0 and transform 0 to ¢ and A4, to
A,.
pWe now discuss the threshold field. Suppose that the
Fréedericksz transition is second order, temporarily.

Then
i
Ehth =Iilu=0

From equation (25)

1

o Vo 2

Iilumo= —— .
tu=o 1+2k<1—v0>

The threshold field for the first case of H along the z
axis is denoted by hlh ) and the following equation can
be derived:

1+2k
cot<2h£¢>>—( » >2hth). (33)

For the second case of H along the y axis, the
threshold field is denoted by h . In equation (33),
letting Ky =K33=Kz, Kj5=0, 1e k=0, and

Ayl
! 14
= 4
2K (34)
we obtain
cot(zhtﬁ/))——/zhlh . (35)
Combining equation (33) with (35) gives
h</ Neot(nhH /2

h<h cot (nhﬁ{l/ / 2) 0‘/
This is an important formula in our determination of k.
From equations (27) and (34), we obtain

o  AgKpn

of B A K ' (37)
If the parameters K;;, K 2, La 1, A(-), Agp are known
and the threshold fields hthl and hth ) are measured by
experiment, the value of k& may be determined from
equation (36). We can therefore judge whether Kj;
exists or not, based on the calculation results. Examples
of curve k— hth> are given in figure 3, showing that the
difference between 4, and A4, affects the value of K3,
and that they are in proportion to each other. But this
efﬁect will fall with the increase of the threshold field

hEh )

4. The first order Fréedericksz transition

In this section, we discuss the effects of the K;3 term
on the properties of the Fréedericksz transition. The
reduced free energy must first be calculated. Equa-
tions (28) or (19), and (25), show the relationships of
the three variables vy, & and u; vq and /& could be solved
through these two equations for a given u. Therefore we
take u as the state parameter (similar to an order
parameter) of the LC, and express the reduced energy
as a function of u. The values of u corresponding to
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1.0
0.8
0.6
0.4

k 0.2
0.0

-0.24
0.4

00 02 04 L 5 08 10

th

Figure3. The reduced threshold field hghl) versus k for
different A()/A(/) with Kzz/K11z0.67, o' =0.1.

uniform state, saturated state and disturbed state are
u=0, u=1 and O<u<1, respectively.

When u is known, the values of vy, & and gy, may be
determined from equations(22)—(32). Taking MBBA
for example, the eclastic constants Kj;=5.8 x 107 12N,
K33/K11=1.25, K>,/K;;=0.67 [20]; the anchoring energy
strength  4,=~2x10""Jm~? [21], the cell thickness
[=5.8um [22] and {=0.2. The curves vo—u, h—u and
go—u obtained from the results of calculation are
illustrated in figures 4-6, respectively.

The following results may be derived from these
three figures:

(1) The deviation of the director in the interfaces
(denoted by vy=sin’0y/u) is sensitive to Kj;
(denoted by k=Kj;/Ky;) for a given u. For
example, in figure4, the vertical line of u=0.2
intersects the curves for k=—-0.4, —0.3, —0.2 at
Py, P,, P3, with corresponding vo=0.859, 0.883,
0.899, respectively.

(2) The deviation of the director at the middle layer
of the LC cell (denoted by u=sin’0,,) is also

1.00

00 01 02 03 04 05 06 07
Uu

Figure4. The function vo(u) for different values of k. As v,
increases at u=0, the successive curves correspond to
k=-04, —0.3, —0.2, —0.1, 0, 0.1, 0.2, 0.3 and 0.4.

00 01 02 03 04 05 06 07

U

Figure5. The function A(u) for different values of k. As A is
increases at u=0, the successive curves correspond to
k=-04, —0.3, —0.2, —0.1, 0, 0.1, 0.2, 0.3 and 0.4.

sensitive to Kj; (denoted by k=K /Ki) for a
given h. For example, in figure 5, the horizontal
line of 7=0.17 intersects the curves for k=04,
0.3, 0.2 at Py, P,, P35, with corresponding
u=0.18, 0.12, 0.02, respectively.

(3) The reduced free energy of the disturbed state is
also sensitive to the value of k, resulting in great
differences in the curves of gy. From the
expression of gy in equation(32) we see that
there is a term directly relevant to k, apart from
I, I, and vy, which are dependent on k. The
curves for k=0.1, 0, —0.1, —0.2 are shown in
figure6 (curves for k=0.2, 0.3, 0.4 below
k=0.1, and curves for k=—0.3, —0.4 above
k=—0.2 are omitted).

The variation of free energy caused by the existence
of the K3 term will change the property of the
Fréedericksz transition. In figure 6, the curve gy—u for
k=0 is tangential to the horizontal axis at u=0, then
descends monotonically for gy<g,. The Fréedericksz
transition thus occurs at the point #=0 and is second
order. The curve gg—u for k=—0.1 is also tangential to
the horizontal axis gg=0 at u=0, but with increasing u

0.003
0.002-

g, -0.0021

00 01 02 03 04 05 06 07
Uu

Figure 6. Order parameter u versus the reduced free energy
go of the disturbed state for different values of k.
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it rises first, then falls and intersects the horizontal axis
at u.=0.46. Then gy<g, only if u>u.. Therefore is a
Fréedericksz transition from uniform to disturbed state
takes place at u. and is first order. We therefore see that
the existence of the K term may change the transition
properties.

The Kj; term may also give rise to bistability. Re-
examining figure 6, the curve gg—u for k=-0.2 is
tangential to the horizontal axis gy=0 at u=0. But
when u>0, the curve begins to rise monotonically with
go> gy Hence no transition from uniform to disturbed
state occurs. The saturation state is reached directly
and the corresponding reduced field can be deduced
with g,=g,. From equations (30) and (31), we obtain

h="la(1+ Q). (38)

Q0

In the course of the deviation of the director from
uniform state (#=0) to saturated state (u=1), there is a
deformation of the director and the free energy
increases; this is equivalent to the existence of a barrier.
As a result the uniform and saturated states can form a
bistability.

The transitions from uniform to disturbed state and
from uniform to saturated state are both of first order
in the specific examples described above. We now give
the condition for the first order transition in general
cases. Adopting the method of Gouchen er al. [22], gy
of equation (32) is expanded into a Taylor’s series with
respect to u at u=0:

1
go=Au+ 53u2+0(u3). (39)

The coefficients 4, B can be calculated from equa-
tions (22)—(32) (See Appendix IT). They are

A=0
1+y (142k) (1—v]) +
B=20y)3 —— |20 — 0 1y
0{ 8 |70 (1+2k)(1-9)) 0 (40)
~ 3(L4y)kve (I+y)k

0
2(142k)  4(1+2k)*(1— ) [(1+26(1 v")”}}

where 1) is the value of vy at u=0. Because the
condition for the first order transition is gy=>0, it
requires

B>0 (41)

Equations (40) and (41) indicate that the first order
transition taking place in the LC cell is determined by

four parameters: o, {, y and k. The first three are
decided by the construction of LC cell and the Frank
elastic constants K;;, K33 of the materials; the last one
is determined by Kj;. The sign of k and its absolute
value are crucial for the transition properties. We can
therefore judge whether K5 is equal to zero or not
according to the transition properties. As a specific
example we take y=0.25 and draw the curve B=0 in a
o—{ plot based on equations (40) and (41). The curve is
the line of demarcation of the first and the second order
transitions; see figure 7.

There are three curves in figure7, corresponding
to k=0, k=0.1 and k=—0.1. The first and second
transition areas do not coincide. Looking at the shaded
area in figure 7 for example, when k=0 it belongs to the
second order transition area, but for A=—0.1 it is in
the first order transition area. We chose « and ( in the
shaded, are a such that «=1.0, {=—0.5. If the value of
k is really equal to zero, the transition will be second
order, but for k= —0.1 it will be first order. That is to
say, if a first order transition is observed, then k#0, i.e.
K, has a non-zero value.

5. Optical retardation, intersection and slope
The optical retardation has previously been given for
the first case of H along the z axis by [23]

Orm
5= ‘%’TJ note - (%) o (42)
0\ (n2sin” 0(z) +nj cos? 0(z) ) d

where 2 is the wavelength of the light and ny and 7, are
the ordinary and extraordinary indices of refraction,
respectively. Substituting equation (14) into (42) and
transforming it to a function about u, v and v, the

1.5

104

0.5+

0.0 . . .
-1.0 -0.5 0.0 0.5 1.0

Figure7. Parameter { versus the reduced anchoring strength
o for different values of k& with y=0.25. The area above
each curve belongs to the second order transition area;
below is the first order transition area.
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0.3

016 018 020 022 024 026
h

Figure8. The reduced field & versus the relative optical
retardation ¢ for different values of k, taking the same
material parameters as used in figures2 and 3.

relative optical retardation can be expressed as

1 _ L +yuvy 3 ,
T+ Ty l] ) @ 4

where I'=(n2—n}) /n%; 6o=2mnl(n-—ng)/2 is the optical
retardation for zero H or if the value of H is below the
threshold field.

The relationship between ¢ and /2 may be obtained
by combining equations (25) and (28). In the preceding
section we took a set of parameters to give curves of vo—
u and h-u. The same parameters are used to draw the
curves of o-h. Taking A=632.8nm, n.=1.573 and
no=1.477 [14], the results shown in figure8 may be
derived. Because, when k=-0.2, —0.3, —0.4, the
Fréedericksz transition is first order and the director
becomes directly saturated at u=0, these curves are not
shown in figure 8.

Figures 8, 4 and 5 are particularly noteworthy: there
is a common point for each curve for different values of
k (including k=0). But their slopes are different at the
point of intersection and vary monotonically with k. In
figure 8 for the cases of k>0, the slopes are negative
and their absolute values decrease with the increase of
k.

Although figure 8 only reflects a particular example,
it provides useful information: whether or not Kjj is
equal to zero could be concluded from the slopes at the
intersection of the ¢'~4 curves. The common point uy, is

§ = é _ o Jl
do 25 (ne—no) )y,

determined by the following two equations

Ilzoc(l+2§uvo)< 0 )%<1_“V0>% (44)

1—wy 1 +yuvy

_ vo (1 —uvo)(14yuvp) 4
Q (2vo— 1)+ (uvy)(2—3vo+yvo) + (uvo)zy(l —2v) - (45)

Equation (44) is the boundary condition for the case
of k=0, and equation(45) is the condition that is
unconcerned with the value of k. They both come from
equation (25). Furthermore the slopes at u=u, in figure
for 0'~h can be calculated from

do do dh
@L‘%ZEL’“D/@}”“D' (46)

We have attempted to calculate the final results of
equation (46) using the first order derivatives of
equations (43) and (19). But the process is so compli-
cated that it will not be set out here. Taking figure § for
example, the slopes of each curve are tabulated for
the intersection u,=0.4898, vo,=0.9461, h,=0.2192,
0',=0.4954. It can be seen from the table that the slope
is sensitive to the value of k; and whether or not k is
zero can therefore be judged.

6. Discussion
We have discussed the physical effects caused by the
surface terms of free energy. The surface terms include
three parts: the K;3 term, the K,4; term and the
anchoring term. But the question is how to separate
these three terms; in this paper we propose the
following methods:

(1) By adopting a liquid crystal cell with two
parallel substrates, the (n-Vn-nV-n) term in
equation (1) is definitely perpendicular to the
normal of the substrates; so the K,; term
disappears automatically.

(2) Two experiments are carried out on the same
LC cell. One is with the external field H
perpendicular to the substrates and the other
uses the parallel H condition. For the parallel
case the Kj3 term also vanishes automatically,
therefore only the anchoring energy is left in
the surface terms. We use this case to determine

Table. Parameter slopes for different values of k.

Slope =—04 =—03 =—02 =-0.1 k=0 k=0.1 k=0.2 k=0.3 k=04
Geluy 0.1694 0.1498 0.1304 0.1111 0.0921 0.0732 0.0545 0.0359 0.0175
ol —0.1128 —0.073 —0.0335 0.0056 0.0444 0.0828 0.1208 0.1585 0.1958
ol —1.011 —1.0079 —1.0047 —1.0015 —0.9984 —0.9953 —0.9927 —0.9892 —0.9862
hiy 8.9634 13.8132 29.9964 —178.425 —22.507 —12.028 —8.2145 —6.2417 —5.036

il
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the anchoring energy; then it is possible to test
the Kj; term based on the above.

In this paper we propose three different solutions to
verify the existence or otherwise of the K3 term. The
first is to determine two threshold fields with the
external magnetic field H perpendicular or parallel to
the substrates; the second solution is to observe the
properties of the Fréedericksz transition; the third is to
determine the slopes at the intersection for the curves of
reduced field 4 versus optical retardation . Among
these three solutions the first is easy to execute; in the
second, it is necessary to consider the physical effects
cased by the first order transition for precise discrimi-
nation; the third must be coordinated with theory. But
whether the K3 term exists or not is a basic question.
So we need to use different experimental methods from
various points of view for thorough testing.

APPENDIX I

The derivation of equation (25)
The derivative of vy in equation (17) with respect to
0y can be written as

dvo _ 2sin O cos Oy _ 2 sin? 0y cos Oy, 00,

5_00 © sin? Om sin® 0, 5—00
1 (Al)
_ofl—mo}t w ou
N u u 00y

For a given A, taking the derivative for the two sides of
equation (19) with respect to 0, yields

B 1 (1 +yuvo>%%
2vo(1—vg)f \ I —uvo ) 00

L 1 1 +yur\®
A L
v 000 2[v(1—)]2 I —uy
Obtaining the derivative of the integrand in equa-
tion (A2) with respect to 0,

1i(l—O—yuv)zzl—i-"/ v f_u (A3)
00 \ 1 —uv 2 (I=u)[(1+yuv)(1—uv))? 20y
Substituting equation (A3) into (A2) and using (Al), we
have

(A2)

ol—

u 2uvo(1—uv)]
0y 0 (A4)
where Q is defined by equation (26); therefore (21) can

take the form

40y 1z ful—v)]( 1 [oéu o y
dﬁz B §7h[l+yuvo] {u(l —) [5_00 —2(uv0(1—u10))—} B 1+yuv0} (AS)
Substituting equation (A4) into (AS5), yields
doy,  m, [u(l1—w) 1 vo (1 —uvp) %I—Q y
d_HO_Yh{l—l—yuvo] {u(l—vo) ] 0  1+yuw - (A6)
We also can express equation (9) with u, vy and define
the reduced anchoring energy strength o and k as with

equation (25). Substituting equations (20) and (A6) into
(9), yields

; L 1=y \} 1 1-9 y
" {“(1 )=l (1 +”uvuu) h [“(1 -w) Q 1+W"J }
y o

1 14yuvy vo(1—uvy) E
L+k14+yuvy [(1—vo)(1+yuvo)

(AT)

Rearrangement of equation (A7) gives equation (25).

APPENDIX II

Derivation of the condition of the first order transition
The expression of the reduced free energy for the
disturbed state is defined in equation (32).
The values of I;, I, and the first order derivatives of
I, I, with respect to u at u=0 can be expressed as:

I|,=o = arccos /v (A8)
, 1 dw
Il|14:0:_ ld_o‘u:()
2[\10(1 —V())]2 u (A9)

+ # { [vo(1—vo)J* + arccos ﬁ}

bLly—o= % { [vo(1— vo)]%—k arccos \/v—o} (A10)

1
1 Vo deO 3
! _ =Y - n
Lly—0= 2<1_VO> u |u=o+l6(1+/)

(All)
{[vo(l —vo)]% G Vo + 1> + arccos \/%}.

The first order derivative of the reduced free energy is

- — 3
A=%|M:o= 112—21112_2k[w} I
a Iyur (A12)

+ovo (14 Luvo) H, —o-

Substituting equation (A8) and (A10) into (Al2), we
obtain

A=ovy—(142k)[vo(1 —vo)]%arccos V. (Al3)
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The boundary condition (25) at u=0 is

1

_ o 0 2
arccos \/V_O_—H—Zk < ) (Al4)

1— Vo
Substituting equation (A14) into (A13) yields
A=0.

The second order derivative of the reduced free energy
has the form

_ dzgo

—vo) (1 —uwp) 51
T du? !

14+yuvg

1
limo=2{I? =211, — 2k [VO(

oo (14 Luv) } fu—o- (A15)

Substituting equation (A8)—(Al1) into (A15), one has

(1 +2k)l’0(1 —V())

du 2

B {(1+2k+20<)— 1 ocv 12av3} dr 14y
L )

_2(]_,_V){[VO(]_vo)]%(%vo—&-l)}arccos\/%—i-ZaCVﬁ (A16)
+(1+‘/)k{[vo(1—VO)]%(z"O_l)}arCCOS Vo_%(amos )’

Taking the first order derivative of equation (25) with
respect to u at u=0, we obtain the expression for dvy/du
at u=0

dv 14y . 6k(1+y) Yo
du '“:"‘{ 2 +°‘[(1+/) N | T 200 =)+
I+y ok

_1+2k(1+2k)(1—v0)}v°(1_v°)‘ (AL7)

Substituting  equation(Al17) into (Al6), gives
equation (40).
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