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This paper aims at providing me1hods of checking whether the surface elastic term K13 exists
or not, by studying the physical effects caused by K13 on weak anchoring planar NLC cells.
We adopt the effective expression of K13 for an ideal surface according to Pergamenshchik
and Žumer, and obtain the following results. (1) k~K�13

�
K11 can be determined by two

threshold fields if both the Fréedericksz transitions at the threshold point are of second
order. One threshold field corresponds to application of the external magnetic field
perpendicular to the substrates; the other corresponds to the field parallel to the substrates.
(2) The existence of the K13 term may change the property of the Fréedericksz transition, i.e.
from first order to second order, or vice versa. (3) The various curves of relative optical
retardation versus reduced magnetic field h for different k intersect at one point, and the
slopes at the common point are sensitive to k. These results assist in the design of
experiments to check the existence of K13.

1. Introducion
According to Frank [1], the free energy density of a

nematic liquid crystal caused by deformation of the

director n can be expressed as

fF~
1

2
K11 +:nð Þ2z 1

2
K22 n:+|nð Þ2z 1

2
K33 n|+|nð Þ2:

However, Nehring and Saupe [2] pointed out that there

should be an additional two terms up to the order of

(dn)2 in fF. These are

f24~
1

2
K22zK24ð Þ+: n:+ð Þn{n +:nð Þ½ � ð1Þ

f13~K13+: n+:nð Þ: ð2Þ
The total free energy density fd becomes

fd~fFzf24zf13: ð3Þ

The contributions of the terms f24 and f13 to total free

energy can eventually be written as surface energy; they

are termed surface elastic energy.

In recent years there has been controversy over the

existence of these two terms [3–12]. Many authors

regard that they do not exist, because of the restrictions

of elastic theory. However, Pergamenschik believes that

they do exist and regards this as one of the central

problem of the physics of liquid crystals [13]. Whether

these two terms exist or not should ultimately be

examined experimentally. Recently, Stallinga et al. [14]

have studied the effects of the K13 term on the

electrically controlled birefringence (ECB) cell, but

the conclusion is not satisfactory because of experi-

mental inaccuracy. We believe this is because the

considered effects are insensitive to the K13 term; some

new physical effects, sensitive to the K13 term, must

therefore be sought.

In this paper we seek new physical effects, sensitively

dependent on K13, by means of analytical methods and

numerical calculation. In § 2 we determine the Gibbs

energy from which the differential equation and the

boundary condition satisfying director n are obtained.

It should be emphasized that the interfaces should be

considered as ideal, according to the continuum theory.

Pergamanshchik and Žumer [15] pointed out that both

the density and scalar order parameter vary near the

real surface layer. But this can eventually be changed

into an ideal surface (the ideal surface refers to the

density, and order parameters are uniform and equal to

zero abruptly at the interface). The K13 term may be

modified to an effective term K�13, which is called

effective elastic constant. In § 3 the threshold field of an
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LC cell under an external magnetic field will be

considered; two cases are examined and calculated.

One is splay transition (the external field perpendicular

to the substrates), the other is twist transition (the

external field parallel to the substrates). We obtain the

formula k~ K�13

�
K11

� �
which can be used to judge

whether the K13 term exists or not. In § 4, we discuss the

first order Fréedericksz transition, probably caused by

the existence of the K13 term. Another method for

testing the K13 term is also given. In § 5, the relation

between the relative optical retardation and K13 is

considered, which can also be used to test for K13.

2. The Gibbs free energy: equations and boundary

condition

In a weak anchoring NLC cell, two substrates lie in

the z~0 and z~l planes, with the x axis in the lower

substrate plane. Assuming the two substrates are

identical, the easy direction e in both substrates is the

same and along the x axis. One external magnetic field

H is applied to the LC medium. Two cases may be

considered. In the first, H lies along the z axis and the

director n of the LC deflects from the x axis in the xz

plane. Denoting the deflection angle by h, the director n

can be expressed as n~(cos h, 0, sin h). In the second

case, H lies along the y axis and the director deflects

from the x axis in the xy plane. Denoting the deflection

angle by Q, the director n can be expressed as n~(cos Q,

sin Q, 0). Figures 1 and 2, respectively, illustrate the

geometries of the two models.

Before writing out the Gibbs free energy, two points

must be explained. One is the surface anchoring energy,

the other is the elastic free energy. Rapini and Papoular

have proposed a simple phenomenological expression

for the anchoring energy per unit area [16]

gs að Þ~ 1

2
Aa sin2 a ð4Þ

where a is the angle between the easy direction e and

the director n of the NLC at the nematic–wall interface,

and Aa is called the anchoring strength. This is the so-

called RP formula. The RP formula describes many

effects successfully in the presence of a surface.

However, some results calculated from the RP formula

do not agree well with experimental observations [17].

Many authors have introduced a new form of

anchoring energy to replace the RP formula. If the

lower order modification only is included, the new form

can be expressed as [18, 19]

gs að Þ~ 1

2
Aa sin2 a 1zf sin2 a

� �
ð5Þ

where f is a modification constant. Formula (5) is a

modification of (4) and has been accepted by most

authors [14]. When the director distribution in a LC is

calculated through continuum theory, the interfaces are

assumed to be ideal. Hence formula (5) should be

regarded as the effective surface density of anchoring

energy.

On the other hand, if we adopt the ideal interface,

constants K13 and K24 in equations (1)–(3) should be

replaced by the effective elastic constants K�13 and K�24

in terms of Pergamanshchik’s theory [15].

For the first case of an external magnetic field H

along the z axis, the elastic free energy is

Gd~

ð
fd dv

~S

ðl

0

dz
1

2
K11 cos2 hz

1

2
K33 sin2 h

� �
dh

dz

� �2
" #(

{K�13 cos h0 sin h0
dh

dz

����
0

zK�13 cos hl sin hl

dh

dz

����
l

�

ð6Þ

where S is the area of the substrate, and h0 and hl are

the values of h at z~0 and z~l, respectively. The total

Figure 1. The mode of a planar alignment liquid crystal cell
when applying an external magnetic field H along the z
axis. The director n of the LC deflects from the x axis in
the xz plane.

Figure 2. The mode of a planar alignment liquid crystal cell
when applying an external magnetic field H along the y
axis. The director n of the LC deflects from the x axis in
the xy plane.
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free energy of the system can be written as

G~S

ðl

0

dz
1

2
K11 cos2 hz

1

2
K33 sin2 h

� �
dh

dz

� �2

{
1

2
xaH2 sin2 h

" #(

{K�13 cos h0 sin h0
dh

dz

����
0

zK�13 cos hl sin hl

dh

dz

����
l

z
1

2
Ah sin2 h0 1zf sin2 h0

� �
z

1

2
Ah sin2 hl 1zf sin2 hl

� ��
:

Applying the calculus of variations, equation (7) yields

K11 cos2 hzK33 sin2 h
� � d2h

dz2
z sin h cos h K33{K11ð Þ dh

dz
zxaH2 sin h cos h~0

with the boundary condition

K11zK�13

� �
cos2 h0

�
z K33{K�13

� �
sin2 h0

	
h00

~Ah sin h0 cos h0 1z2f sin2 h0

� �
{

1

2
K�13 sin 2h0

dh00
dh0

where h00~
dh
dz

��
z~0

, which should be a function of h0.

This boundary condition is also given in [14] and meets

the requirement of [13].

For the second case of an external magnetic field H

along the y axis, the total free energy of the system can

be written as

G~S

ðl

0

dz
1

2
K22

dQ

dz

� �2

{
1

2
xaH2 sin2 Q

" #(

z
1

2
AQ sin2 Q0 1zf sin2 Q0

� �
z

1

2
AQ sin2 Ql 1zf sin2 Ql

� ��

where Q0 and Ql are the values of Q at z~0 and z~l,

respectively.

Applying the calculus of variations, equation (10)

yields

K22
d2Q

dz2
zxaH2 sin Q cos Q~0 ð11Þ

with the boundary condition

K22
dQ

dz

����
z~0

~AQ sin Q0 cos Q0 1z2f sin2 Q0

� �
: ð12Þ

Comparing equations (7)–(9) with equations (10)–(12)

we see that all equations in the second case of H along

the y axis can be obtained by letting K11~K33~K22,

K�13~0, and by transforming h to Q, Ah to AQ, in

corresponding equations in the first case of H along the

z axis.

3. The fundamental equations, threshold field and the

value of k
We first discuss the solutions of equation (8) with the

boundary condition (9). Clearly there exist two trivial

solutions: (i) hw0, the uniform solution, the corre-

sponding LC state is called the uniform state; (ii) hw
p/2, the saturated solution, the corresponding LC state

is called the saturated state. In addition, there is a

non-trivial solution satisfying dh/dz|0, the correspond-

ing LC state is called the disturbed state. From

equation (8) we know that the disturbed state satisfies

d

dz
K11 cos2 hzK33 sin2 h
� �

h02zxaH2 sin2 h
� 	

~0: ð13Þ

Assuming the director distribution is symmetric to the

middle layer of the cell (z~l/2), when z~l/2, h~hm and
dh
dz

��
z~1

2

~0. From equation (13) we obtain

K11 cos2 hzK33 sin2 h
� �

h02~xaH2 sin2 hm{ sin2 h
� �

that is,

dh

dz
~

xa

K11

� �1
2

H
sin2 hm{ sin2 h

1zc sin2 h

 !1
2

for zv
1

2

� �
ð14Þ

where

c~
K33{K11

K11
ð15Þ

Integrating equation (14) results in

l

2

xa

K11

� �1
2

H~

ðhm

h0

1zc sin2 h

sin2 hm{ sin2 h

 !1
2

dh: ð16Þ

In order to express the boundary condition of the

disturbed solution definitely and make numerical

calculation in the next sections, we make a variable

transformation as follows. Letting

u~ sin2 hm, v~
sin2 h

sin2 hm

, v0~
sin2 h0

sin2 hm

ð17Þ

and introducing the reduced field

h~
H

H0
c

~H

,
p

l

K11

xa

� �1
2

" #

ð18Þ

then equation (16) can be expressed as

p

2
h~

ð1

v0

1

2 v 1{vð Þ½ �
1
2

1zcuv

1{uv

� �1
2

dv ð19Þ

Equation (19) is an integral equation in u and v0, and is

transformed from the differential equation (14).

Now we also re-express the boundary condition with

u and v0. From equation (14) we obtain

h00~
p

l
h

u{uv0

1zcuv0

� �1
2

ð20Þ

and

dh00
dh0

~
1

2

p

l
h

u{uv0

1zcuv0

� �1
2 1

u 1zcuv0ð Þ
Lu

Lh0

{
1zcu

1{v0ð Þ 1zcuv0ð Þ
Lv0

Lh0


 �
:

hu/hh0 and hv0/hh0 can be obtained from equations (19)

and (17), respectively. Letting

(7)

(8)

(9)

(10)

(21)
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I1~

ð1

v0

1

2 v 1{vð Þ½ �
1
2

1zcuv

1{uv

� �1
2

dv ð22Þ

I2~

ð1

v0

1

2 v 1{vð Þ½ �
1
2

1zcuv

1{uv

� �1
2

:v dv ð23Þ

I3~

ð1

v0

1

2 v 1{vð Þ½ �
1
2

1zcuv

1{uv

� �1
2

: 1

1zcuvð Þ 1{uvð Þ dv ð24Þ

the boundary condition (9) can be expressed as

I1 1z
k

1zk

v0 1{uv0ð Þ
1zc1uv0

1

1{v0

1{Q

Q
{

cu

1zcuv0


 �� �

~a 1z2fuv0ð Þ 1

1zk

1zcuv

1zc1uv0

v0 1{uv0ð Þ
1{v0ð Þ 1zcuv0ð Þ


 �1
2

ð25Þ

where

Q~v0z 1zcð Þu v0 1{v0ð Þ 1{uv0ð Þ
1zcuv0


 �1
2

I3 ð26Þ

c1~
K33{K11{2K�13

K11zK�13

k~
K�13

K11
, a~

Ah
:l

2K11

ð27Þ

The derivation of the above equations is given in

Appendix I.

From equations (19) and (22) we know

p

2
h~I1: ð28Þ

Defining the reduced free energy

g~
lG

2K11S
ð29Þ

then the reduced free energies for the uniform state,

saturated state and disturbed state are, respectively,

gu~0 ð30Þ

gs~{
p

2
h

 �2

za 1zfð Þ ð31Þ

gh~u I2
1 {2I1I2{2k

v0 1{v0ð Þ 1{uv0ð Þ
1zcuv0


 �1
2

I1zav0 1zfuv0ð Þ
( )

:

Equations (22)–(32) are the basic equations in this

paper, and are suitable for the first case of H along the

z axis. For the second case of H along the y axis, we let

K11~K33~K22, K�13~0 and transform h to Q and Ah to

AQ.

We now discuss the threshold field. Suppose that the

Fréedericksz transition is second order, temporarily.

Then

p

2
hth~I1 u~0j

From equation (25)

I1 u~0j ~
a

1z2k

v0

1{v0

� �1
2

:

The threshold field for the first case of H along the z

axis is denoted by h
\ð Þ

th , and the following equation can

be derived:

cot
p

2
h

\ð Þ
th

 �
~

1z2k

a

� �
p

2
h

\ð Þ
th : ð33Þ

For the second case of H along the y axis, the

threshold field is denoted by h
==ð Þ

th . In equation (33),

letting K11~K33~K22, K�13~0, i.e. k~0, and

a0~
AQ
:l

2K22
ð34Þ

we obtain

cot
p

2
h
==ð Þ

th

 �
~

1

a0
p

2
h
==ð Þ

th : ð35Þ

Combining equation (33) with (35) gives

k~
1

2

h
==ð Þ

th cot ph
\ð Þ

th

.
2

 �

h
\ð Þ

th cot ph
==ð Þ

th

.
2

 � :
a

a0
{1

2

4

3

5: ð36Þ

This is an important formula in our determination of k.

From equations (27) and (34), we obtain

a

a0
~

Ah

AQ

K22

K11
: ð37Þ

If the parameters K11, K22, xa l, Ah, AQ are known

and the threshold fields h
\ð Þ

th and h
==ð Þ

th are measured by

experiment, the value of k may be determined from

equation (36). We can therefore judge whether K13

exists or not, based on the calculation results. Examples

of curve k{h
\ð Þ

th are given in figure 3, showing that the

difference between Ah and AQ affects the value of K13,

and that they are in proportion to each other. But this

effect will fall with the increase of the threshold field

h
\ð Þ

th .

4. The first order Fréedericksz transition

In this section, we discuss the effects of the K13 term

on the properties of the Fréedericksz transition. The

reduced free energy must first be calculated. Equa-

tions (28) or (19), and (25), show the relationships of

the three variables v0, h and u; v0 and h could be solved

through these two equations for a given u. Therefore we

take u as the state parameter (similar to an order

parameter) of the LC, and express the reduced energy

as a function of u. The values of u corresponding to

(32)
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uniform state, saturated state and disturbed state are

u~0, u~1 and 0vuv1, respectively.

When u is known, the values of v0, h and gh may be

determined from equations (22)–(32). Taking MBBA

for example, the elastic constants K11~5.8610212 N,

K33/K11<1.25, K22/K11<0.67 [20]; the anchoring energy

strength Ah<261027J m22 [21], the cell thickness

l~5.8 mm [22] and f~0.2. The curves v0–u, h–u and

gh–u obtained from the results of calculation are

illustrated in figures 4–6, respectively.
The following results may be derived from these

three figures:

(1) The deviation of the director in the interfaces

(denoted by v0~sin2 h0/u) is sensitive to K�13

(denoted by k~K�13

�
K11) for a given u. For

example, in figure 4, the vertical line of u~0.2

intersects the curves for k~20.4, 20.3, 20.2 at

P1, P2, P3, with corresponding v0~0.859, 0.883,

0.899, respectively.

(2) The deviation of the director at the middle layer

of the LC cell (denoted by u~sin2hm) is also

sensitive to K�13 (denoted by k~K�13

�
K11) for a

given h. For example, in figure 5, the horizontal

line of h~0.17 intersects the curves for k~0.4,

0.3, 0.2 at P’1, P’2, P’3, with corresponding

u~0.18, 0.12, 0.02, respectively.
(3) The reduced free energy of the disturbed state is

also sensitive to the value of k, resulting in great

differences in the curves of gh. From the

expression of gh in equation (32) we see that

there is a term directly relevant to k, apart from

I1, I2 and v0, which are dependent on k. The

curves for k~0.1, 0, 20.1, 20.2 are shown in

figure 6 (curves for k~0.2, 0.3, 0.4 below

k~0.1, and curves for k~20.3, 20.4 above

k~20.2 are omitted).

The variation of free energy caused by the existence

of the K13 term will change the property of the

Fréedericksz transition. In figure 6, the curve gh–u for

k~0 is tangential to the horizontal axis at u~0, then

descends monotonically for ghvgu. The Fréedericksz

transition thus occurs at the point u~0 and is second

order. The curve gh–u for k~20.1 is also tangential to

the horizontal axis gh~0 at u~0, but with increasing u

Figure 3. The reduced threshold field h
\ð Þ

th versus k for
different Ah/AQ with K22/K11<0.67, a’~0.1.

Figure 4. The function v0(u) for different values of k. As v0

increases at u~0, the successive curves correspond to
k~20.4, 20.3, 20.2, 20.1, 0, 0.1, 0.2, 0.3 and 0.4.

Figure 5. The function h(u) for different values of k. As h is
increases at u~0, the successive curves correspond to
k~20.4, 20.3, 20.2, 20.1, 0, 0.1, 0.2, 0.3 and 0.4.

Figure 6. Order parameter u versus the reduced free energy
gh of the disturbed state for different values of k.
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it rises first, then falls and intersects the horizontal axis

at uc~0.46. Then gh¡gu only if u¢uc. Therefore is a

Fréedericksz transition from uniform to disturbed state

takes place at uc and is first order. We therefore see that

the existence of the K�13 term may change the transition

properties.

The K�13 term may also give rise to bistability. Re-

examining figure 6, the curve gh–u for k~20.2 is

tangential to the horizontal axis gh~0 at u~0. But

when uw0, the curve begins to rise monotonically with

ghwgu. Hence no transition from uniform to disturbed

state occurs. The saturation state is reached directly

and the corresponding reduced field can be deduced

with gu~gs. From equations (30) and (31), we obtain

h~
2

p
a 1zfð Þ½ �

1
2: ð38Þ

In the course of the deviation of the director from

uniform state (u~0) to saturated state (u~1), there is a

deformation of the director and the free energy

increases; this is equivalent to the existence of a barrier.

As a result the uniform and saturated states can form a

bistability.
The transitions from uniform to disturbed state and

from uniform to saturated state are both of first order

in the specific examples described above. We now give

the condition for the first order transition in general

cases. Adopting the method of Gouchen et al. [22], gh

of equation (32) is expanded into a Taylor’s series with

respect to u at u~0:

gh~Auz
1

2
Bu2zo u3

� �
: ð39Þ

The coefficients A, B can be calculated from equa-

tions (22)–(32) (See Appendix II). They are

A~0

B~2av0
0

1zc

8
2v0

0{
1z2kð Þ 1{v0

0

� �
za

1z2kð Þ 1{v0
0

� �

" #

{fv0
0

(

{
3 1zcð Þkv0

2 1z2kð Þ {
1zcð Þk

4 1z2kð Þ2 1{v0ð Þ
1z2kð Þ 1{v0

0

� �
za

� 	
)

where v0
0 is the value of v0 at u~0. Because the

condition for the first order transition is gh¢0, it

requires

B¢0 ð41Þ

Equations (40) and (41) indicate that the first order

transition taking place in the LC cell is determined by

four parameters: a, f, c and k. The first three are

decided by the construction of LC cell and the Frank

elastic constants K11, K33 of the materials; the last one

is determined by K�13. The sign of k and its absolute

value are crucial for the transition properties. We can

therefore judge whether K�13 is equal to zero or not

according to the transition properties. As a specific

example we take c~0.25 and draw the curve B~0 in a

a–f plot based on equations (40) and (41). The curve is

the line of demarcation of the first and the second order

transitions; see figure 7.

There are three curves in figure 7, corresponding

to k~0, k~0.1 and k~20.1. The first and second

transition areas do not coincide. Looking at the shaded

area in figure 7 for example, when k~0 it belongs to the

second order transition area, but for k~20.1 it is in

the first order transition area. We chose a and f in the

shaded, are a such that a~1.0, f~20.5. If the value of

k is really equal to zero, the transition will be second

order, but for k~20.1 it will be first order. That is to

say, if a first order transition is observed, then k|0, i.e.

K�13 has a non-zero value.

5. Optical retardation, intersection and slope

The optical retardation has previously been given for

the first case of H along the z axis by [23]

d~
4p

l

ðhm

h0

n0ne

n2
e sin2 h zð Þzn2

0 cos2 h zð Þ
� �1

2

{n0

0

@

1

A dz

dh

� �
dh

where l is the wavelength of the light and n0 and ne are

the ordinary and extraordinary indices of refraction,

respectively. Substituting equation (14) into (42) and

transforming it to a function about u, v and v0, the

Figure 7. Parameter f versus the reduced anchoring strength
a for different values of k with c~0.25. The area above
each curve belongs to the second order transition area;
below is the first order transition area.

(40)

(42)

1088 G. Ronghua et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



relative optical retardation can be expressed as

d0~
d

d0

~
n0

2I1 ne{n0ð Þ

ð1

v0

1

1{CzCuvð Þ
1
2

{1

" #
1zcuv

v 1{vð Þ 1{uvð Þ


 �1
2

dv

where C~ n2
e{n2

0

� ��
n2

e ; d0~2pl(ne–n0)/l is the optical

retardation for zero H or if the value of H is below the

threshold field.

The relationship between d’ and h may be obtained

by combining equations (25) and (28). In the preceding

section we took a set of parameters to give curves of v0–

u and h–u. The same parameters are used to draw the

curves of d’–h. Taking l~632.8 nm, ne~1.573 and

n0~1.477 [14], the results shown in figure 8 may be

derived. Because, when k~20.2, 20.3, 20.4, the

Fréedericksz transition is first order and the director

becomes directly saturated at u~0, these curves are not

shown in figure 8.

Figures 8, 4 and 5 are particularly noteworthy: there

is a common point for each curve for different values of

k (including k~0). But their slopes are different at the

point of intersection and vary monotonically with k. In

figure 8 for the cases of kw0, the slopes are negative

and their absolute values decrease with the increase of

k.

Although figure 8 only reflects a particular example,

it provides useful information: whether or not K�13 is

equal to zero could be concluded from the slopes at the

intersection of the d’–h curves. The common point up is

determined by the following two equations

I1~a 1z2fuv0ð Þ v0

1{v0

� �1
2 1{uv0

1zcuv0

� �1
2

ð44Þ

Q~
v0 1{uv0ð Þ 1zcuv0ð Þ

2v0{1ð Þz uv0ð Þ 2{3v0zcv0ð Þz uv0ð Þ2c 1{2v0ð Þ
: ð45Þ

Equation (44) is the boundary condition for the case

of k~0, and equation (45) is the condition that is

unconcerned with the value of k. They both come from

equation (25). Furthermore the slopes at u~up in figure

for d’–h can be calculated from

dd

dh
u~up

�� ~
dd

du
u~up

��
�

dh

du
u~up

�� : ð46Þ

We have attempted to calculate the final results of

equation (46) using the first order derivatives of

equations (43) and (19). But the process is so compli-

cated that it will not be set out here. Taking figure 8 for

example, the slopes of each curve are tabulated for

the intersection up~0.4898, v0p~0.9461, hp~0.2192,

d’p~0.4954. It can be seen from the table that the slope

is sensitive to the value of k; and whether or not k is

zero can therefore be judged.

6. Discussion

We have discussed the physical effects caused by the

surface terms of free energy. The surface terms include

three parts: the K13 term, the K24 term and the

anchoring term. But the question is how to separate

these three terms; in this paper we propose the

following methods:

(1) By adopting a liquid crystal cell with two

parallel substrates, the (ne+n-n+en) term in

equation (1) is definitely perpendicular to the

normal of the substrates; so the K24 term

disappears automatically.

(2) Two experiments are carried out on the same

LC cell. One is with the external field H

perpendicular to the substrates and the other

uses the parallel H condition. For the parallel

case the K13 term also vanishes automatically,

therefore only the anchoring energy is left in

the surface terms. We use this case to determine

Figure 8. The reduced field h versus the relative optical
retardation d’ for different values of k, taking the same
material parameters as used in figures 2 and 3.

Table . Parameter slopes for different values of k.

Slope k~20.4 k ~20.3 k~20.2 k~20.1 k~0 k~0.1 k~0.2 k~0.3 k~0.4

dv0

du

��
up

0.1694 0.1498 0.1304 0.1111 0.0921 0.0732 0.0545 0.0359 0.0175
dh
du

��
up

20.1128 20.073 20.0335 0.0056 0.0444 0.0828 0.1208 0.1585 0.1958
dd0

du

��
up

21.011 21.0079 21.0047 21.0015 20.9984 20.9953 20.9927 20.9892 20.9862
dd0

dh

��
up

8.9634 13.8132 29.9964 2178.425 222.507 212.028 28.2145 26.2417 25.036

(43)
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the anchoring energy; then it is possible to test

the K13 term based on the above.

In this paper we propose three different solutions to

verify the existence or otherwise of the K13 term. The

first is to determine two threshold fields with the

external magnetic field H perpendicular or parallel to

the substrates; the second solution is to observe the

properties of the Fréedericksz transition; the third is to

determine the slopes at the intersection for the curves of

reduced field h versus optical retardation d’. Among

these three solutions the first is easy to execute; in the

second, it is necessary to consider the physical effects

cased by the first order transition for precise discrimi-

nation; the third must be coordinated with theory. But

whether the K13 term exists or not is a basic question.

So we need to use different experimental methods from

various points of view for thorough testing.

APPENDIX I

The derivation of equation (25)

The derivative of v0 in equation (17) with respect to

h0 can be written as

Lv0

Lh0
~

2 sin h0 cos h0

sin2 hm

{
2 sin2 h0 cos hm

sin3 hm

Lhm

Lh0

~2
v0 1{uv0ð Þ

u


 �1
2

{
v0

u
: Lu

Lh0
:

ðA1Þ

For a given h, taking the derivative for the two sides of

equation (19) with respect to h0 yields

{
1

2 v0 1{v0ð Þ½ �
1
2

1zcuv0

1{uv0

� �1
2Lv0

Lh0

z

ð1

v0

L
Lh0

1

2 v 1{vð Þ½ �
1
2

1zcuv

1{uv

� �1
2

( )

~0:

ðA2Þ

Obtaining the derivative of the integrand in equa-

tion (A2) with respect to h0,

L
Lh0

1zcuv

1{uv

� �1
2

~
1zc

2

v

1{uvð Þ 1zcuvð Þ 1{uvð Þ½ �
1
2

: Lu

Lh0
: ðA3Þ

Substituting equation (A3) into (A2) and using (A1), we

have

Lu

Lh0
~

2 uv0 1{uv0ð Þ½ �
1
2

Q
ðA4Þ

where Q is defined by equation (26); therefore (21) can

take the form

dh00
dh0

~
1

2

p

l
h

u 1{v0ð Þ
1zcuv0


 �1
2 1

u 1{v0ð Þ
Lu

Lh0

{2 uv0 1{uv0ð Þð Þ
1
2


 �
{

c

1zcuv0

� �

Substituting equation (A4) into (A5), yields

dh00
dh0

~
p

l
h

u 1{v0ð Þ
1zcuv0


 �1
2 v0 1{uv0ð Þ

u 1{v0ð Þ


 �1
21{Q

Q
{

c

1zcuv0

( )

:

We also can express equation (9) with u, v0 and define

the reduced anchoring energy strength a and k as with

equation (25). Substituting equations (20) and (A6) into

(9), yields

I1~ a 1z2fuv0ð Þ{ku v0 1{v0ð Þ½ �
1
2

1{uv0

1zcuv0

� �1
2

I1
1

u 1{v0ð Þ
1{Q

Q
{

c

1zcuv0


 �( )

1

1zk

1zcuv0

1zc1uv0

v0 1{uv0ð Þ
1{v0ð Þ 1zcuv0ð Þ


 �1
2

Rearrangement of equation (A7) gives equation (25).

APPENDIX II

Derivation of the condition of the first order transition

The expression of the reduced free energy for the

disturbed state is defined in equation (32).

The values of I1, I2 and the first order derivatives of

I1, I2 with respect to u at u~0 can be expressed as:

I1 u~0j ~ arccos
ffiffiffi
v
p

ðA8Þ

I 01 u~0j ~{
1

2 v0 1{v0ð Þ½ �
1
2

dv0

du
u~0j

z
1zc

4
v0 1{v0ð Þ½ �

1
2z arccos

ffiffiffi
v
pn o

ðA9Þ

I2 u~0j ~
1

2
v0 1{v0ð Þ½ �

1
2z arccos

ffiffiffiffiffi
v0

pn o
ðA10Þ

I 02 u~0j ~{
1

2

v0

1{v0

� �1
2dv0

du
u~0j z

3

16
1zcð Þ

v0 1{v0ð Þ½ �
1
2

2

3
v0z1

� �
z arccos

ffiffiffiffiffi
v0

p� �
:

ðA11Þ

The first order derivative of the reduced free energy is

A~
dg

du
u~0j ~ I2

1 {2I1I2{2k
v0 1{v0ð Þ 1{uv0ð Þ

1zcuv0


 �1
2

I1

(

zav0 1zfuv0ð Þgju~0:

ðA12Þ

Substituting equation (A8) and (A10) into (A12), we

obtain

A~av0{ 1z2kð Þ v0 1{v0ð Þ½ �
1
2arccos

ffiffiffiffiffi
v0

p
:

(A7)

(A13)

(A5)

(A6)
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The boundary condition (25) at u~0 is

arccos
ffiffiffiffiffi
v0

p
~

a

1z2k

v0

1{v0

� �1
2

ðA14Þ

Substituting equation (A14) into (A13) yields

A~0:

The second order derivative of the reduced free energy

has the form

B~
d2gh

du2 u~0j ~2 I2
1 {2I1I2{2k

� v0 1{v0ð Þ 1{uv0ð Þ
1zcuv0


 �1
2

I1

zav0 1zfuv0ð Þg’ u~0j :

Substituting equation (A8)–(A11) into (A15), one has

B~ 1z2kz2að Þ{ a

1{v0

z
2av0

1{v0


 �
dv0

du
{

1zc

2
1z2kð Þv0 1{v0ð Þ

{
3

4
1zcð Þ v0 1{v0ð Þ½ �

1
2

2

3
v0z1

� �� �
arccos

ffiffiffiffiffi
v0

p
z2afv2

0

z 1zcð Þk v0 1{v0ð Þ½ �
1
2 2v0{1ð Þ

n o
arccos

ffiffiffiffiffi
v0

p
{

1zc

4
arccos

ffiffiffiffiffi
v0

pð Þ2:

Taking the first order derivative of equation (25) with

respect to u at u~0, we obtain the expression for dv0/du

at u~0

dv0

du
u~0j ~

1zc

2
za 1zcð Þ{4f{

6k 1zcð Þ
1z2k


 ��
v0

1z2kð Þ 1{v0ð Þza

{
1zc

1z2k

ak

1z2kð Þ 1{v0ð Þ

�
v0 1{v0ð Þ:

Substituting equation (A17) into (A16), gives

equation (40).
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